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Long delay times in reaction rates increase intrinsic fluctuations
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In spatially distributed cellular systems, it is often convenient to represent complicated auxiliary pathways
and spatial transport by time-delayed reaction rates. Furthermore, many of the reactants appear in low numbers
necessitating a probabilistic description. The coupling of delayed rates with stochastic dynamics leads to a
probability conservation equation characterizing a non-Markovian process. A systematic approximation is
derived that incorporates the effect of delayed rates on the characterization of molecular noise valid in the limit
of long delay time. By way of a simple example, we show that delayed reaction dynamics can only increase
intrinsic fluctuations about the steady state. The method is general enough to accommodate nonlinear transition
rates allowing characterization of fluctuations around a delay-induced limit cycle.
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I. INTRODUCTION

Biochemical circuits underlying many complicated cell
functions, disease states, or viral propagation are often mod-
eled by systems of delayed differential equations [1-6],
where the delay time represents auxiliary reaction pathways
or spatial transport. It is well known that in chemical reaction
networks at the cellular level, many of the reactants are
present in low copy number and therefore intrinsic noise is
simply one of the operating constraints [7]. It is, however,
difficult to develop and analyze models that contain both
stochastic dynamics and delayed reaction rates.

For systems without delay, a stochastic description typi-
cally takes the form of a chemical master equation that gov-
erns the probability distribution P(n,¢) of finding the system
in state n at time ¢ conditioned upon some initial state [8,9].
The master equation can rarely be solved exactly and various
methods have been developed to approximate the evolution
of P(n,t). Perhaps the most well known is the Kramers-
Moyal expansion, which when truncated after the second
term results in a diffusion equation with nonlinear drift and
nonconstant diffusion called the Fokker-Planck equation
[10,11]. If the deterministic system evolves along a stable
trajectory near a stable fixed point, van Kampen [12] has
developed an alternate approximation of the master equation
that relies upon a perturbation expansion in some extensive
quantity providing a consistent characterization of the fluc-
tuations in terms of a Fokker-Planck equation with linear
drift and constant diffusion from whence the mean and vari-
ance are easily computed. (For a more detailed discussion,
see [10,12] and references therein.)

Nevertheless, in many systems the individual reaction
events depend upon the past state of the system [7,13] and
the methods developed to approximate the solution of the
master equation are no longer appropriate. Writing the tran-
sition probability of moving from state n’ to state n in an
interval dt as W, ,dt and the two-point joint probability dis-
tribution of finding the system in state n at time ¢ and in state
m at time 71— 7 as P,(n,7;m,7—7), the delayed dynamics in-
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troduces a convolution term into the probability conservation
equation,

JP(n,t
% = E Wn’,nP(n,»t) - Wn,n’P(nat)

n

+2 > W, P(n',rsm,i—7) =W, Py(n,t;m,f— 7).

(1)

- . . )
Here Wn,’n(m) depends upon the state at a time 7 in the past:

m=n(s- 7). Equation (1) is no longer a closed equation for
P(n,t) since it now includes the unknown distribution
P,(n,t;m,7—17). As a consequence, it no longer describes a
Markov process and methods used to treat the standard
chemical master equation require modification.

Many investigations using stochastic simulation algo-
rithms have illustrated the importance of intrinsic noise in
systems with delay [3,6,7], while past analytic work has fo-
cused primarily upon approximations of the delayed nonlin-
ear Fokker-Planck equation [14,15], stochastic delay differ-
ential equations [5,16,17], or exactly solvable random-walk
models [18,19]. While each provides considerable insight
into the interdependent effects of noise and time delay, com-
paratively little work has been done to connect the underly-
ing discrete probability conservation equation to these con-
tinuous approximations. In what follows a perturbation
scheme is developed that, under the condition that the delay
time exceeds the relaxation time of the deterministic system,
allows a general probability conservation equation to be ap-
proximated by a delayed linear Fokker-Planck equation,
thereby making connection to past studies. Recent work by
Bratsun et al. [13] has explored very similar questions, al-
though their method is applicable only to systems with linear
reaction rates. The delayed linear noise approximation,
which is an extension of van Kampen’s linear noise approxi-
mation [12], provides a consistent characterization of intrin-
sic fluctuations in delayed systems and is sufficient to show
that under fairly general conditions delayed reaction events
can only increase the magnitude of these fluctuations. A
simple example of a birth/death process is used to provide a
concrete implementation of the method and a nonlinear
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predator-prey model illustrates characterization of fluctua-
tions along a delay-induced limit cycle.

II. MATHEMATICAL METHODS

A stochastic model of a network of chemical reactions
governs the probability distribution P(n,) of finding the sys-
tem in state n at time ¢, with dynamics given in terms of the
stoichiometric change resulting from the completion of each
reaction and the propensity of occurrence for each reaction
event, recorded, respectively, in the stoichiometry matrix S
and the propensity vector ¥ [20,21]. Consider a system with
N reactants that can combine through one of R reactions. To

i [(H E-Su) - 1] (n)P(n,1) +V 2

Jj=1 i=1 J=R+1
current-state dynamics

where ©({n;}) is the Heaviside step function that ensures no
delayed reaction occurs if completion results in the unphysi-
cal end state n;<<0 for any elements of n. Throughout, only
nonconsuming reactions are considered [6,23]; i.e., reactants
of an unfinished reaction are allowed to participate in new
reactions.

The solution of the full distribution P(n,¢) is not possible
in general, therefore, we seek an approximate solution. To
that end, we make the ansatz that the number of reactant
molecules is large enough that the discrete molecule numbers
n; can be represented by the continuous deterministic con-
centrations x; and some continuous fluctuations ¢; that scale
as the square root of the number of molecules [12],

n;=Vx; + \R/a,- and m;=Vx]+ \s"T/,B[, (3)

where V is the system volume and x/=x;(t—7). Using the
auxiliary variable B;, the delayed fluctuations are written as
Bi(t—7)=a;(t—7) to emphasize the approximation made be-
low; specifically, that the delay time is sufficiently large that
«; and B; can be treated as independent random functions. As
we show below [Eq. (18)], that assumption is consistent with
the requirement that the delay time is much larger than the
characteristic relaxation time of the deterministic equations
and that the delayed feedback is weak (¢ <<1). In the expan-
sion below, 1/V is assumed small, although since x; is held
fixed, equivalently, one assumes that »; is large. The resulting
approximation will be called the delayed linear noise ap-
proximation.

Invoking the linear noise approximation by Taylor ex-
panding the microscopic transition rates about the macro-
scopic trajectory x(#) in powers of \V [12,21], we have

7(m,n,V) = v(x".x) + 72[—1 a;+ a—yﬁﬁz},
\, (9)61 d

with an analogous expression for #;(n,V). The rates v; cor-
respond to the deterministic reaction rates (see [21] for a
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facilitate the inclusion of delayed kinetics into the formalism,
we separate the R reactions into two groups: those with rates
{V (m)}Re <1 depending upon the current state of the system and
those with rates {e7,(m,n)}? j=r +1 depending upon the past
state of the system m=n(z— T) where 7 is the delay time.
The parameter ¢ measures the delayed feedback strength;
throughout, we shall assume that the feedback is weak and
explicitly retain leading-order terms in e.

To keep the notation compact, we introduce the step op-
erator Ei_sif' that acts to increment the variable n; by an inte-
ger —S;;: E;Sif(n;) = f(n;—S;;). Denoting the system volume
by V, Eq. (1) takes the form [13,21,22]

N

I1 E:Sff> - 1]2 e7(m,n)O({n}) Po(n,rm, 1 - 7), )
i=1
delayed-state dynamics

discussion of the difference between ¥ and v). The discrete
st_p operator E is likewise expressed as a Taylor series in
V12, 21]

N
H E_ i=1- /_2 Szjﬁ +-- E SljSkja é’k»
Vi=1 2Vlk_

where d;=d/da;. The one-point P(n,f) and two-point joint
probability P,(n,7;m,t—7) can be written in terms of the
single distribution and joint distribution of the
fluctuations about the macroscopic trajectory, I1(a,r) and
I,)(e,t; B,1— 1), respectively, via the linear change in vari-
ables suggested by Eq. (3),

P(n,t)= V" 1l(a,1), (4)

Py(n,t;m,t—7) = VN (a,t; 8, - 17), (5)

where @ and B are centered upon x(7) and x(7—7), respec-
tively, and the factor involving V comes from the normaliza-
tion of II,

f i P(n,7)dn= VN2 f k (e, )da=1. (6)

—oo —o0

The decoupling of the deterministic component x from the
stochastic component a, with a 1/\/V scaling of the fluctua-
tions implied by the ansatz Eq. (3), is the most fundamental
step in the approximation. That assumption leads directly to
the normalization above and allows subsequent terms in the
perturbation expansion to be ordered in terms of powers of
1/\v [12].

For long delay time 7, and small delayed-feedback
strength ¢, the fluctuations at time ¢ are approximately inde-
pendent of the fluctuations at time 7—7, allowing the joint
distribution to be factored as

(e, t; B,7) = l(a,r) X II(B,T) + ch(e, B),
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T<t-r, (7)

where h(a, ) must obey the consistency condition,

fh(a,ﬂ)da:fh(a,ﬂ)dﬂzo.

Notice the factoring of the fluctuations II, is not equivalent
with assuming independence in the full state, P(n,7;m,7)
=P(n,t) X P(m,7) (as is done in [13]). Independence of the
full state is inconsistent with the deterministic rate equations,

PHYSICAL REVIEW E 80, 031129 (2009)

T8 v=tx"x), (8)
dt
where, in the limit of large n, the present state is completely
determined by the past states (except, perhaps, at steady
state). Moreover, independence of the full state implies that
higher-order correlations, including the autocorrelation func-
tion K(¢—s), vanish for |t—s|> 7. We show below [Eq. (18)]
that this is not the case.

In the limit 1/V— 0(n;— =), the Heaviside step function
is @({n;})=1, and with the factored joint distribution, Eq. (7),
the sum over m is replaced by the integral over f,

% N
1 av; av; 1 av; ov;
f V,.+—r2[—z” a,»+—1(9yf,8,} V- MI(a,)I1(B,t - DdB= v,»+—$2{—1” a,-+—i”,</a,->] VN2 (e ).
—oo i i X i

i

Here, the first two terms on the right-hand side follow from
the normalization condition on I1(8,7—17), Eq. (6), and the
third from,

V—N/zfoo BIL(B,t— 1dB=(B,).

Substituting the expanded terms in Eq. (2), using the
chain rule to write the partial derivatives of P(n t) in terms
of IT and a [12], and collecting in powers of \'V, the zeroth
order term is simply the deterministic delayed reaction rate
equations, Eq. (8). At VV-!, we obtain the equation charac-
terizing the probability distribution of the fluctuations a(z),

all
Al 2 —TdaIl) + —la A —eT7(BoIl,  (9)
where
as - as -
L' I V]l, el = ] V]’, D =S - diag[v]- ST.
ox; I ax]

Equation (9) is a closed diffusion equation for I1(a,?) with
coefficients that are linear in the fluctuation variables a. The
matrix D represents the diffusive effects of the fluctuations,
while the matrices I" and I'” represent the restorative
drift in the system [22,24]. Equation (9) is not quite a
Fokker-Planck equation since it contains the delayed average
(B;)={a;(t— 1)) in the drift coefficient. Nevertheless, the ini-
tial conditions can be chosen so that the last term in Eq. (9)
vanishes, as we now show. Multiplying % by «; and inte-
grating yield the evolution equation for the mean,

d{a(1))

It =T -(a(t)) + el (a(t - 7)). (10)

The initial average {(a(f)) can always be absorbed into the
initial conditions on x(7) so that (a(r))=0 for t=0, thereby
ensuring that {a(z))=0 for all time. Without loss of general-

v ox; ox;

i=1

ity, then, we write Eq. (9) as the Fokker-Planck equation
with coefficients linear in e,

&H

P - 2 T0(a 1) + ED,]aaH (11)
ij

It is important to note that although the fluctuations at time ¢
are independent of fluctuations in the past, they are condi-
tioned by the macroscopic solution x(7) [and x(7— 7)] through
the coefficient matrices I' and D.

A consequence of Eq. (11) is that, to O(V~!), the fluctua-
tions are Gaussian distributed with covariance E,»J:(oz,»aj)
—(a;Xa))=(a;a;). Multiplying Eq. (11) by a;a; and integrat-
ing over all e yield a dynamic equation governing = [22],

d

Il

=T.

Il
I

+2-TT+D (12)

U

t

(where I'T is the matrix transpose of I'; not to be confused
with I'"). At steady state, the coefficient matrices I' and D
(and therefore =) will be constant satisfying the fluctuation-
dissipation relation

I'E+E-I'+D=0. (13)

The diffusion matrix D is symmetric and positive semidefi-
nite by construction, so that a steady-state probability distri-
bution is only possible if the drift term I' balances the diffu-
sion D. With long delay in the reaction kinetics, the
restorative influence of I'” no longer appears in the equation
governing the fluctuations [Eq. (11)], so that although the
delayed dynamics increases the magnitude of the diffusion
matrix D, the dissipation due to I'" is lost. Therefore, in the
limit of long delay time, delayed dynamics can only serve to
increase the magnitude of intrinsic fluctuations.
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III. STEADY-STATE AUTOCORRELATION FUNCTION
AND SPECTRUM

The fluctuation-dissipation relation, Eq. (13), and the evo-
lution equation for the mean, Eq. (10), together provide an
expression for the time-autocorrelation matrix for the fluc-
tuations about the steady state, K(r)={(a(f)-@’(0)). The
steady-state autocorrelation function K(z) is, by definition,

K(1) = f f a' (1) - a' (O (a,1;,0)da dax.

Rewriting in terms of the conditional probability,

K(7) =f J a' (1) - & (0)I(a,fla,0)1(,0)da’ de,

K(t)=fj<a(t)>a<o>'aT(O)H(a,O)da, (14)

where (a()) ) is the solution of Eq. (10) with initial con-
dition «(0) and IT is the equilibrium distribution of a(0)
[13,25]. Equation (7) requires that the conditional probability
density I1(a’,t| @,0) be written as a perturbation expansion
in g,

(', 1|a,0) =11(a',f]@,0) + eIl (a’ 1

,0) + 0(&?).
(15)

Consequently, in the conditional average (a@(t))q), only
terms to first order in & are retained.

The conditional average (a(1))) is obtained from Eq.
(10), which is easily solved via Laplace transform. The equi-
librium correlation function is an even function of time dif-
ference alone, equivalent to boundary condition {a(z))=0 for
1<0, leading to the formal solution

(@)oo = [T~ T = 5T - (a(0)).  (16)

The derivation of Eq. (11) assumes £ — 0, so to remain con-
sistent, we retain only leading-order terms in € in the Laplace
transform of the mean,

(@(s)) =[sT-TT"-(a(0))
+ee”TsI-TT - T7-[sI-T]" - (a(0)).
(17)

With substitution into Eq. (14), using the fluctuation-
dissipation relation, Eq. (13), the autocorrelation function is

K(r) =exp[T't] - B,
+e0 DL {[ST-TT - T7-[{I-T]"}- E,,
(18)
where @(7—7) is the Heaviside step function and £ is the
time-shifted inverse Laplace transform. The first term pro-
duces an exponential drop from #=0, while the second term
produces an anticorrelated second peak slightly beyond r=7;

higher-order terms in & produce alternating correlated/
anticorrelated peaks of magnitude O(&") for the nth peak.
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The fluctuation spectrum follows immediately from the
autocorrelation function. We denote the & correction to the

autocorrelation function K, (s),

A

Kcorr(s) = 6‘_”[5‘1 - F]_l I [SI - F]_l > (19)

then the spectrum S(w) is [11]
o 0
S(w) = f e K (r)dr + f 'K (= 1)dt
O —00

=[-i0l+IT" D [iol+T7]"!
+ S{Kcnrr(iw) : Es + Es : Kzorr(_ iw)}’ (20)

where D is the diffusion matrix introduced in Eq. (9) evalu-
ated at the steady state.

IV. LINEAR EXAMPLE—DELAYED PROTEIN
DEGRADATION

To provide some context for the formal derivation above,
consider a simple birth/death model with delayed degrada-
tion [13]. The total number of species X evolves via the
following three reactions:

g
constant synthesis:X—X+1; v =1,
%)
linear degradation:X—X-1; wv,=0x,
V3

delayed degradation:XﬁX —-1; w»m=e&”. (21)

The reaction rate vector (in units of concentration/time) is
given by v=[v,dx,edx"] and the stoichiometry matrix is S
=[1,-1,-1]. The deterministic reaction rate equation for the
concentration x(7) is then governed by the delayed differen-
tial equation X=S:w=y-dx—edx". The auxiliary coefficient
matrices in Eq. (11) are the scalars I'==48 and D=y+ dx
+e0x™. For the sake of simplicity, we consider the fluctua-
tions about the steady state x,;, where x,=v/&(1+¢). From
Eq. (13), the variance of the fluctuations about x; is [using
Eq. (3)]

A useful measure of the relative magnitude of the fluctua-
tions is the fractional deviation 7]3,

) =)
777'~>oo Y

1
=—(1+¢), 22
Ve +e) 22)
where here N =Vx, is the number of molecules in the steady
state. Without delay, this simple example describes a Poisson

process and for a Poisson process the Fano factor F=77’N,
=E/x,=1. From Eq. (22),

1, 7—0
F= (23)
l+e, T7— 0.

The Fano factor is a particularly convenient statistic to con-
trast the ordinary and delayed linear noise approximations, as
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Fano 1.5
factor .
varx 1.25 P
L]
X
CE S
0.75}
— Delayed linear noise approximation (t— )
o5l ~7 7 Linear noise approximation (t—0)
’ ® Stochastic simulation data
0.25}
0.1 1 10

Dimensionless delay time, 8t

FIG. 1. Fano factor as a function of delay time. The 7=0 (dot-
ted) and 7— o (solid) approximations to the Fano factor, var{x]/(x)
[Eq. (23)], provide lower and upper bounds on the estimate of in-
trinsic noise over the range of delay times, as compared to stochas-
tic simulation data generated from the model shown in Eq. (21)
(filled circles). The delayed linear noise approximation adequately
characterizes the fluctuations even when the delay time is of the
order of the other time scales in the problem (i.e., 76~ 1). Here, the
deterministic reaction rates are y=100, 6=4, e=1/4, with V=1.
Simulation data are from an ensemble of 10° members using the
delayed Gillespie algorithm [23].

well as illustrating the delay time necessary for the present
approximation to hold. Figure 1 shows the Fano factor F
estimated from stochastic simulation [20,23] with =100,
0=4, and £=0.25, as compared with the long delay time
(solid) and short delay time (dotted) estimates. Notice the
crossover occurs for 7= §7!, that is for delay time compa-
rable to the natural time scale of the undelayed kinetics.
The autocorrelation function is given by Eq. (18),

K(1) = {1 = £O(t - 7) 5e(1 - T)}:VS . (24)

This expression coincides with the result of Bratsun et al.
[13] to O(e), and as they demonstrate, K() very faithfully
reproduces the autocorrelation from simulation data. Further-
more, the autocorrelation can be used to identify “quasi-
cyles” where regular oscillations emerge from deterministi-
cally stable systems [17,26-28].

The delayed-degradation model is used as a transparent
illustration of the method, but the same results can be ob-
tained by other methods (for example, via moment-
generating functions [13]). In contrast, the model in the next
section contains more realistic, nonlinear transition rates and
consequently cannot be treated by existing methods. Yet non-
linear rates abound in physical application and exhibit rich
dynamics as the following example demonstrates.

V. NONLINEAR EXAMPLE—PREDATOR-PREY
DYNAMICS

The methodology outlined in Sec. II makes no assump-
tions about the nonlinearity of the transition probabilities in
the stochastic model opening up the possibility to study the
dynamics of delayed nonlinear systems. As an example ca-
pable of exhibiting asymptotic stability and limit cycle be-
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havior, consider the predator-prey model with delayed preda-
tor birth,

ar _ _ A
U =aP(1) KP(t) bP(t)Z(1),

az =cP(t-7Z(t-7)-dZ(1),

dt
where P(r) is the density of prey, Z() is the density of preda-
tors, and K is the carrying capacity of the environment. Here,
7 is the delay time associated with gestation before the birth
of predators. Assuming each birth event produces a litter of
one, the reaction network, in volume V, takes the form

Vs np(t—7) n,(t—
P S PR . Gk L Uk
1% 1%

where np/V=P(t) and n,/V=Z(1).
With a suitable nondimensionalization,

POZK, Z():a/b,

; (25)

to=1/a, e=cK/a, and J=d/a,

the deterministic model equations reduce to

‘Z_f =P(1) - P(1)* - P()Z(1),

cji—f =eP(t-71Z(t- 1) - 62(1), (26)
where 7 has been likewise nondimensionalized by 1/a. The
equilibrium point corresponding to coexistence of the popu-
lations is (P,Z)=(és ,l—f) leading to a necessary condition
for stable coexistence, with and without delay, that 6<<e.

It is well known that delayed rates can have a destabiliz-
ing effect on population dynamics [29], and in fact can gen-
erate limit cycles in otherwise stable models [6,30,31]. To
illustrate the approximation method and the destabilizing ef-
fects of delay, we consider two values for the delay time,
7=0 and 7=30, in two parameter regimes—the first chosen
so that the equilibrium remains asymptotically stable for
both values of the delay time; the second chosen so that a
limit cycle appears for large delay 7.

A. Asymptotically stable

For (¢=0.15, 6=0.05), the system remains asymptotically
stable in both limits, 7=0 [Fig. 2(a)] and 7=30 [Fig. 2(b)].
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7.0
No delay A

eo| 0

6.8
1032
6.7

6.6

6.5

6.0 6.5 7.0 75
10%P

7.0

With delay B
6.9 7=30

6.8
10%Z
6.7

6.6

6.5

6.0 6.5 7.0 7.5
10%P

FIG. 2. Steady-state fluctuations in a nonlinear model
(£=0.15,5=0.05). (a) Density plot of the equilibrium fluctuations
from stochastic simulation (10° realizations). Solid curves corre-
spond to the first- and second-standard deviation ellipse computed
by an ordinary application of the linear noise approximation [12].
(b) Same model parameters as in panel A, but with delayed predator
birth (7=30). The solid curves correspond to the first- and second-
standard deviation ellipse computed by the delayed linear noise
approximation.

From Egq. (13), long delay time reduces the stability imparted
to the system through I'. As a consequence, the variance of
the fluctuations is expected to increase with increasing delay
time 7. This increase is evident in the stationary probability
distribution of the fluctuations derived from stochastic simu-
lation (Fig. 2). The ellipses shown in the figure correspond to
the first- and second-standard deviations of the steady-state
Gaussian distribution predicted by the approximation, while
the density plot represents extensive stochastic simulation
data generated using Gillespie’s algorithm [20,23].

The most striking consequence of the delay on the intrin-
sic fluctuations is the increased magnitude of the cross-
correlation between P and Z. As 7—oe, the delayed rate
c¢P(t—7)Z(t—7) no longer offers compensation to the preda-
tion event with rate —bP(r)Z(¢) resulting in the increased
cross-correlation. This is an example of the nontrivial effect
of delayed dynamics on intrinsic fluctuations, even though
the equilibrium point is stable. In situations where the delay
affects not only the fluctuations but the underlying stability
itself (as is the case for delay-induced limit cycles), the
analysis becomes more complicated.
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B. Limit cycle

For (¢=0.25, 6=0.05), the system is asymptotically stable
for =0, but a limit cycle appears for 7=30. By separating
the fluctuations tangent to the limit cycle from those trans-
verse [24,28,32,33], the delayed linear noise approximation
is easily extended to a system exhibiting a limit cycle.

Briefly, a moving coordinate frame is introduced using as
a basis the unit vectors tangent (§) and normal (7) to the limit
cycle. In the moving frame, the covariance of the transverse
fluctuations =,, decouples from the divergent fluctuations
along the limit cycle and is characterized by a stable evolu-
tion equation [cf. Eq. (12)],

dErr

=roor! E

E,+D,, 27
" rr (27)

where I'/, and D], are elements of the drift and diffusion
matrices in the moving frame,

au .
I'=U-T-U'+— .U, D'=U-D-U", (28

and U is the rotation matrix generated from the deterministic
rate equations f(x,x7),

L |h —fz]
U=—+——— . 29
\'f%+f%[f2 fi 29)

Figure 3 illustrates the estimate of the fluctuations along
the delay-induced limit cycle via the delayed linear noise
approximation [Fig. 3(a)] compared with the result of a sto-
chastic simulation [Fig. 3(b)]. The width of the envelope of
the fluctuations is not uniform around the orbit reflecting the
state-dependent drift I" and diffusion D matrices in Eq. (12).
This same nonuniformity is also observed in the stochastic
trajectory.

The nonlinear predator-prey model demonstrates the util-
ity and comparative simplicity of the delayed linear noise
approximation—once the network is written in terms of the
stoichiometry matrix and the propensity vector, despite the
lengthy derivation, Egs. (9), (12), and (18) allow algorithmic
characterization of the fluctuations.

VI. DISCUSSION

In models of cellular chemical reaction systems, spatial
transport and long auxiliary pathways are often represented
using time-delayed reaction rates. At the mesoscopic level,
delayed dynamics results in a probability conservation equa-
tion that characterizes a non-Markovian process. Since ana-
lytic solutions are rare, approximation of the governing equa-
tions is necessary. In the limit of large numbers of molecules,
weak delayed feedback and long delay time, we have derived
the leading-order behavior of a probability conservation
equation with delayed transition rates from an expansion in
the system volume V. The fluctuations are characterized by a
linear Fokker-Planck equation, in accordance with the linear
noise approximation of the undelayed case [12], and coincid-
ing with a delayed random walk in a quadratic potential [19].
We find that the delayed dynamics contributes unevenly to
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12¢ With delay A
7=30
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FIG. 3. Fluctuations around a delay-induced limit cycle
(£=0.25,5=0.05). (a) Envelope of the standard- deviation of the
fluctuations transverse to the limit cycle as computed by Eq. (27)
using the delayed linear noise approximation. (b) Stochastic simu-
lation of the system along the limit cycle.
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the drift and diffusion coefficients of the Fokker-Planck
equation and conclude that long time delay can only increase
the magnitude of intrinsic fluctuations for systems where the
delayed feedback has a stabilizing effect.

Here, we have focused upon two example systems—one
that evolves toward a stable steady state, the second is a
nonlinear model exhibiting a delay-induced limit cycle. It is
often the case that models with delayed rates are used to
describe oscillatory dynamics [4]. The delayed linear noise
approximation is easily adapted to systems evolving along a
stable limit cycle by a simple change in coordinates [24,33].

Finally, the effect of noise on the macroscopic behavior of
a system is not always additive, and in fact noise can gener-
ate ordered oscillations from a deterministically stable model
[13,34]. These noise-induced oscillations have been pro-
posed as a mechanism to extend the capacity of a given
network to sustain oscillations [35,36]. The results derived
above, specifically the autocorrelation function Eq. (18), al-
low the method developed for studying noise-induced oscil-
lations in undelayed systems to be applied to systems char-
acterized by delayed dynamics [26].
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